Technical Specifications

THERMAL PARAMETERS

Heat generated by Linear Disc Resistors is dissipated mainly by radiation and convection from the exposed surface areas. Within restricted domains, mathematical models may be employed to permit heat transfer estimations.

Symbols

∆T = Temperature Rise (°C)

- W_a = Watts / Unit Exposed Surface Area (W.cm⁻²) v = Volume / Disc (cm³)
- c_m = Specific Heat Capacity of Active Material
- = 2J. cm^{-3} .°C⁻¹
- Do = Disc Outside Diameter (cm)
- τ = Resistor Thermal Time Constant (s)

Radiation and Convection $W_a = 0.00026(\Delta T)^{1.4}$
 $(\Delta T = 50^{\circ}C \text{ to } 175^{\circ}C, \text{ Do } = 1.9 \text{ cm to } 15.1 \text{ cm}, \text{ Ambient } 25^{\circ}C)$

Dynamic Energy

Since the active material has a negative Temperature Coefficient of Resistance, estimated energies based on Bridge Resistance will be lower than the actual. If the Temperature Coefficient is considered then a true Dynamic Energy will result.

EB	=	Energy in Joules based on a Bridge Resistance	
E	=	True Dynamic Energy	
α	= 1	Cemperature Coefficient of Resistance (TCR)	

Then

where:

lf

 $E_p = \frac{2}{\alpha} (1 - \sqrt{(1 - \alpha E_p)})$ Joules

In this relationship, α is the fractional (not %) value and the negative sign has been included in the equation.

Thermal Conductivity	0.04 W / cm ² .°C / cm									
Maximum Insertion Energy Ratings	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Recommended Operating Temperatures	Disc diameters ≤ 11.2 cm : ≤ 300 °C (Infrequent Operation) Disc diameters > 11.2 cm : ≤ 250 °C (Infrequent Operation) All Discs diameters : ≤ 150 °C (Continuous Operation)									
Temperature Rise from Energy Injection	ΔT (°C) = Joules (per disc) / (v x c _m) (Free Air)									
Thermal Time Constant Full Cooling	τ (s) = Max Joules @ 25°C / Max Watts @ 25°C ≥ 4 $τ$									
De-rating for other ambient Temperature	s (Ta°C) Multiply Max Joules @ 25°C & Max Watts @ 25°C by									

the ratio (150 - Ta) / 125

Repetitive Thermal Impulsing:

Assuming that the Heat Transfer Coefficient α (W / cm², °C / cm) is constant over the operating temperature range, then the Peak Temperature Rise (Δ Tp) associated with repetitive impulsing can be estimated by way of reference to a classical geometric progression ...

 ΔTp (°C) = $\Delta T \times (1 - (e^{-(t/\tau)})^n) \div (1 - e^{-(t/\tau)})$ 1

 Δ T is the Temperature Rise associated with each electrical impulse (°C) au is the Resistor Thermal Time Constant (s) t is the Repetition Rate (s) n is the number of impulses

If the number of impulses (n) $\Rightarrow \infty$ (ie continuous duty), then equation 1 can be simplified thus ...

 $\Delta \text{Tp}(^{\circ}\text{C}) = \Delta \text{T} \div (1 - e^{-(t/\tau)})$

2

INTERNATIONA

Linear Disc Resistors

- 100% Active Material
- High Surge Energy Rating
- High Voltage Withstand
- Essentially Non-Inductive
- Wide Resistivity Range
- Wide Range of Geometries
- Air / Oil / SF6 Environments
- Single Disc or Modular Assemblies
- Custom Solutions Readily Available
- Free Design Service

HVR Linear Disc Resistors are manufactured from a carefully blended mixture of clays, alumina and carbon. After blending, the material is pressed to the required shape, with diameters ranging from 0.3 to 15.1 cm. The Resistors are then fired at high temperature in a tunnel kiln with controlled atmosphere.

This produces a Ceramic Carbon Resistor which is 100% active material and therefore of minimum size. Aluminium is then flame-sprayed onto the flat surfaces of the resistor to provide electrical contact, and an anti-track coating is applied to the periphery to improve dielectric withstand.

With the capability of sustaining energies ranging from Joules to Mega-Joules, at frequencies up to Mega-Hz, HVR Linear Disc Resistors can be used in even the most demanding applications

such as electrical transmission, traction, AC/DC drives, pulse power, dummy loads, induction heating and pulse forming networks.

Tel: +44 (0) 191 489 7771 Fax: +44 (0) 191 483 9501 E-mail: info@hvrint.com

1

STYLE	OUTSIDE DIAMETER		IN	RESISTO	OR TYPES METER (} Di)		v	VOL = π/4 x (D	UME o ² - Di ²) :	кL		MAX JOL	IMUM JLES		MAXIMUM WATTS		THERN CON	IAL TIME STANT		WEIGHT (Volume x 2.25g / cm ³)			A/L $A/L = \pi/4 \times (D_0^2 - D_i^2) + L$				RESISTANCE RANGE		
	(Do)	SOLID	1.1	1.4	2.0	2.6	3.4		(\	/)			@ 2	25°C		@ 25°C		(τ)										MINIMUM	MAXIMUM
Units	(cm)			(C	:m)				(cr	m³)			(J)		(W)		(Sec	onds)			(g)			(CI	m)		Oh	ims
M001A	1.9	AB 378	AB 379					7.2	4.8			1800	1200			3.5	510	340			16.0	11.0			1.1	0.7			3R9	27K0
M001C	2.4	AB 704	AB 380					11.5	9.1			2875	2275			4.0	720	570			26.0	20.5			1.8	1.4			2R0	15K0
M001B	3.1	AB 419	AB 335	AB 984				19.2	16.8	15.3		4800	4200	3825		5.5	870	760	700		43.0	38.0	34.5		3.0	2.6	2.4		1R2	10K0
M002A	4.2	AB 350		AB 381	AB 045			35.2		31.3	27.2	8800		7825	6800	7.5	1170		1040	910	79.0		70.5	61.0	5.5		4.8	4.2	0R68	5K6
M002C	5.0	AB 061			AB 851			50.0	42.0			12500	10500			9.0	1390	1170			112.5	94.5			7.7	6.5			0R43	3K6
M002B	6.0	AB 389			AB 046	AB 387		72.0	64.0	58.0		18000	16000	14500		10.5	1710	1520	1380		162.0	144.0	131.0		11.1	9.9	9.0		0R33	2K4
M003C	7.4	AB 443			AB 039	AB 399	AB 409	110.0	100.0	96.0	86.0	27500	25000	24000	21500	13.0	2120	1920	1850	1650	248.0	225.0	216.0	194.0	16.9	15.7	14.8	13.4	0R22	1K0
M003B	8.2	AB 395			AB 801	AB 564	AB 886	134.0	126.0	120.0	110.0	33500	31500	30000	27500	14.0	2390	2250	2140	1960	302.0	284.0	270.0	248.0	20.8	19.6	18.7	17.2	0R18	820R0
M004A	9.4	AB 444			AB 675	AB 902	AB 565	176.0	168.0	162.0	154.0	44000	42000	40500	38500	16.5	2670	2550	2450	2330	396.0	378.0	365.0	347.0	27.3	26.1	25.2	23.7	0R12	560R0
M004C	10.2	AB 917			AB 919	AB 923	AB 926	208.0	200.0	194.0	184.0	52000	50000	48500	46000	17.5	2970	2860	2770	2630	468.0	450.0	437.0	414.0	32.2	30.9	30.1	28.6	0R10	470R0
M004B	11.2	AB 456			AB 070	AB 029	AB 403	250.0	242.0	236.0	228.0	62500	60500	59000	57000	19.5	3210	3100	3030	2920	565.0	545.0	530.0	515.0	38.8	37.6	36.7	35.2	0R082	390R0
M005C	12.7	AB 935			AB 038	AB 967	AB 460	322.0	314.0	308.0	298.0	80500	78500	77000	74500	22.0	3660	3570	3500	3390	725.0	705.0	695.0	670.0	49.9	48.6	47.8	46.3	0R068	180R0
M005B	13.7	AB 968			AB 974	AB 978	AB 946	374.0	366.0	360.0	352.0	93500	91500	90000	88000	23.5	3980	3890	3830	3740	840.0	825.0	810.0	790.0	58.0	56.8	55.9	54.5	0R056	150R0
M006C	15.1	AB 449			AB 622	AB 808	AB 410	454.0	446.0	442.0	432.0	113500	111500	110500	108000	26.0	4370	4290	4250	4150	1020.0	1005.0	995.0	970.0	70.5	69.3	68.4	66.9	0R047	120R0
		<	DISC	LENGTH	IS (L) 2.5	4 cm	>																							

ELECTRICAL PARAMETERS

PHYSICAL / MECHANICAL PARAMETERS

Dimension Range Density	Outside Diameter (Do) 0.3 to 15.1 c	m Standard Length (L) 2.54 cm	Length (L) 1 to 5 cm	Resistance Va Resistance To	lues Ierance	Whilst E24 values are p	Whilst E24 values are preferred, other values are readily available at no additional cost. +/- 20% +/- 10% and +/- 5% available as standard							
Shock and Vibration	Linear Disc Resistors are robust and	d capable of absorbing transmitte	ed mechanical shock provided direct	Resistivity Ra	1ge - ρ	3 Ohm cm to 30000 Oh	3 Ohm cm to 30000 Ohm cm $\rho = R \times A/L$ where R = Resistance Value							
	impact is avoided.		·	Temperature C	oeffici	ent - TCR -0.05% to -0.15% per °C	-0.05% to -0.15% per °C Temperature Rise depending on Resistivity Value.							
Coefficient of Linear Expansion	+ 4 x 10 ⁻⁶ to + 10 x 10 ⁻⁶ per °C	Bending Strength	30 to 60 kg.m for a 15.1 cm dia disc	-		TCR = 0.16 x e ^{-(logp/1} .	⁴⁾ - 0.135	(%/°C Temperature Rise)	-					
Youngs Modulus	3 x 10 ⁶ N cm ⁻²	Crushing Strength	Average value 12000 N cm ⁻²											
				Voltage Coeffi	cient - V	/CR -0.5% to -7.5% / kV / cn	ı							
Assembly Mounting Force	Linear Disc Resistors may be assen	nbled directly to the busbar or as	sembled into stacks by mounting on			VCR = -0.62 x p ^{0.22}	%/kV/cm)	For $ ho$ domain 10 to 7500 0	Ohm cm					
	an appropriate tie rod. Sufficient ass	sembly force must be maintained	to provide good electrical interdisc											
	contact over long periods of time. H	VR recommend the use of sever	al disc spring washers in series	Inductance		This is negligible (nH) a	This is negligible (nH) and the resistors may be described as non-inductive. In							
	(reduces stiffness ratio) to provide th	ne reliable mounting force descri	bed below :			practice the inductance	practice the inductance of connecting leads will be greater than that of the resistors.							
	Force (kg) = $120 \times (D_0 - D_i)^{0.7}$ (±5)	0%)												
	As a guide the total compression (de	eflection), from 'just nip' condition	n should be :	Dielectric Constant (Permittivity) ϵ_r This is very difficult to measure and will vary according to material										
	Total compression = 2 + (Number of	of Discs x 0.1) mm		resistivity. As an order of merit : $\epsilon_r \simeq 5$										
	Greater compressive forces are per	missible provided the disc contact	ct surfaces are ground flat and											
	are free from foreign bodies, thereby	y minimising the risk of destructiv	ve induced bending moments.	Maximum Wor	king Vo	oltage Withstand per cm of Disc Leng	and per cm of Disc Length (V _{working})							
				Volts (rms)	SF6	Vworking = 1.00 x (R/t x A/L) ^{0.335}	kV / cm	≥ t Domain 10 to 50 ms	\mathbf{N}					
Disc Terminations	Metallised contacts are flame spray	ed onto the opposing flat surface	s of the Resistor Discs.		AIR	Vworking = 0.87 x (R/t x A/L) ^{0.3}	kV / cm	5 t = Insertion time in ms)					
	Standard metallised contacts include	e Aluminium, Copper, Brass, Nic	kel and Silver.	Volts (Impulse)	SF6	Vworking = 8.0 x ^{1.2} \Log(R/2.54 x A/L)	kV / cm	1.2 / 50 µs Waveform	ς ρ Domain					
Anti-Track Coating	Epoxy or Silicone based anti-track of	oatings are utilised for improven	nent of dielectric		AIR	Vworking = 4.3 x ^{1.2} Log(R/2.54 x A/L)	kV / cm	1.2 / 50 µs Waveform	10 to 7500 Ohm c					
	withstand in Air and SF6 gas.				AIR	Vworking = 3.0 x Log(R/2.54 x A/L)	kV / cm	50 / 1000 µs Waveform)					
Environmental Protection	Resistor Discs can be impregnated	with Silicone Varnish to reduce r	noisture ingress and terminals		AIR	Vworking = 1.5 x (Log(R/2.54 x A/L)) ^{1.25}	kV / cm	100 / 10000 µs Waveform	·					
	Electroless Nickel Plated to minimis	e corrosion.												
Resistor Drying	Ceramic Resistors are porous and a	absorb moisture, this should be n	emoved from the discs prior to use.											
	Dry the discs in an oven at 110 - 12	0°C for 24 hours. Place discs in	a sealed container with silica gel.	SOLID 1.1	1.4	2.0 2.6 3.4 Colour c	ode shows (different inside diameters (cm).						

10 to 7500 Ohm cm